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ABSTRACT  

Next generation wireless communication systems use massive Multi Input Multi Output (m-MIMO) 
antenna arrays for their enhanced beamforming capabilities. Providing accurate Channel State Information 
(CSI) is vital for optimizing m-MIMO communication systems. The complexity of channel reconstruction 
grows exponentially with the number of antennas, causing traditional methods to become increasingly 
complicated. Machine-learning techniques can be a useful alternative for channel reconstruction using 
partial CSI feedback. This paper presents the results of a simulation study built using the MATLAB 5G 
Toolbox and a neural network trained using the simulated data. The simulator emulates a 5G channel to 
generate its path delays and gains, and the realistic CSI feedback. This data was used to train and test a 
neural network to estimate the dominant path gains and delays. The models showed promising results while 
operating on limited CSI data.  
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1 INTRODUCTION 

Telecommunication systems demand constant innovation, and the requirements grow exponentially with 
each generation of the wireless technology. One of the ways the 5th Generation (5G) wireless systems 
respond to these growing requirements is using massive Multi-Input Multi-Output (m-MIMO) antennas 
(Dahlman, Parkvall, and Skold 2018). These systems have the potential to improve the channel bandwidth, 
coverage, and capacity through beamforming and spatial multiplexing. To take advantage of these perks, 
the systems require accurate Channel State Information (CSI), which are metrics that describe how the 
channel will affect the signal. However, increasing the number of antennas increases the complexity and 
overhead when measuring the CSI, known as channel sounding (Mawatwal, Sen, and Roy 2020). These 
computations are built using a matrix of complex numbers, called the channel matrix, in which each element 
includes a gain and angle which, when multiplied by the transmitted signal will estimate the received signal 
(without any noise). The channel matrix grows exponentially with the addition of new antennas, further 
complicating channel reconstruction algorithms that try to rebuild the channel matrix based on CSI and/or 
received pilots. Classical algorithms will fail to meet the real-time constraints in these massive antenna 
systems (Li et al. 2020). 
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Machine Learning (ML) is an increasingly popular approach for improving the accuracy, feedback 
overhead, and runtime of channel reconstruction (Ye, Li, and Juang 2018). 5G wireless communication 
systems are complex, making it difficult to implement and maintain new algorithms. Additionally, classical 
algorithms such as those described in (Han et al. 2019) and (Liu, Lau, and Dai 2106) have very high 
computational complexity. Alternatively, data-driven models eliminate the analytical complexity in the 
conventional methods above. ML can easily identify trends in multi-dimensional data in ways that humans 
cannot. Although, training a model is computationally taxing and requires a lot of data, once the model has 
been trained, it is very fast to execute (Li et al. 2020). ML solutions are often faster to execute and with 
equivalent performance, if not better, than existing solutions.  

This research proposes a method for channel reconstruction from limited CSI using NN. The data was 
generated using a simulator built with the MATLAB 5G Toolbox (MathWorks 2020). The MATLAB 5G 
toolbox provides a library of functions and examples for simulating the 5G NR wireless channels. This 
includes various physical layer models to simulate the functionality of the transmitter and receiver (e.g., 
modulation and encoding) as well as the different effects of the wireless channel. The data is generated by 
simulating a wireless channel and calculating the CSI, which is recorded along with the path gains and 
angles. A path is a physical route through the channel traveled by the wireless signal; a path is characterized 
by its delay, angle, and gain. A combination of the 5G toolbox functions and custom functions calculate the 
CSI, including the Channel Quality Indicator (CQI), Received Signal Strength Indicator (RSSI), Precoding 
Matrix Indicator (PMI), and Rank Indicator (RI). These metrics are commonly calculated in practice and 
will be used as the input features for the ML model. The data from multiple simulations is aggregated and 
stored to be used to train a Neural Network (NN) in the statistical programing language R. The NN models 
predict the dominant path gains and delays from partial CSI feedback. Many different NN were tested using 
different combinations of the CSI to determine which would give optimal results. The predicted path gains 
and delays can be used to reconstruct the channel. Results show that the accuracy of the NN is promising 
while operating with limited CSI.  

The remainder of this paper is organized as follows. First, the background section defines the wireless 
channel model, MIMO systems, describe the CSI used in the NN and other channel reconstruction 
techniques. Section 3 explains the experiment and the NN model used. Section 4 describes the simulator, 
along with its configurable components and outputs. Section 5 presents the output of the simulator and the 
trained NN’s channel path predictions. Finally, Section 6 concludes the paper.   

2 BACKGROUND AND RELATED WORK 

This section provides an overview of the wireless communication and ML topics involved in this work. It 
includes a definition of wireless channels, beamforming and m-MIMO antennas, CSI, Orthogonal 
Frequency Division Multiplexing (OFDM) transmission grids, and ML.  

2.1 Wireless Channels 

A channel is a physical transmission medium. In the case of wireless communication, the channel is the 
effects of the environment on the radio waves as they travel between transmitter and receiver. Wireless 
channels can be impacted by many factors: pathloss, shadowing and multipath effects. The pathloss is the 
attenuation due to the distance between the transmitter and the receiver. Free-Space Path Loss (FSPL) is 
the simplest form of pathloss, shown in the following equation (Tse and Viswanat 2004), ܮܲܵܨ = ቀସగௗ௙௖ ቁଶ

 

where d is the distance, f is the carrier frequency, and c is the speed of light. The attenuation increases 
exponentially with distance. The channel’s effect on the transmitted signal is represented as a matrix, if 
known, the transmitter and receiver can work around the physical limitations in the channel to communicate 
more effectively. ܻ = ܪ ∗ ܵ + ܼ shows how the received signal is related to the transmitted signal. Let N 

(1) 
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be the number of subcarriers. MTX and MRX are the number of antennas on the transmitter and receiver, 
respectively. S is the transmitted signal which has the dimension [MTX × N]. H is the channel matrix and 
has dimension [MRX × MTX]. Z is the additive noise, and Y is the received signal, both with dimension [MRX 
× N]. A wireless channel will apply some form of attenuation and phase shift to each of the transmitted 
symbols.  

Wireless signals are also impacted by objects in their path, causing them to experience reflection, refraction, 
and dispersion. Shadowing is the attenuation caused by obstacles in the path between the transmitter and 
receiver. Signals are not limited to following a single path to the receiver, which also affects the channel; 
often referred to as multipath effects. Each path will experience a different channel, as they may have 
different obstacles and/or distances. This will cause the signals to take a different amount of time to 
propagate to the receiver resulting in a different delay, phase, and gain for each of these paths. When adding 
signals that are out of phase, they can either add constructively or destructively. Moving the receiver slightly 
can change the relative phase between signals causing a significant change in received power. The channel 
matrix can be reconstructed with knowledge of the path gains, angles, and delays; shown in (Li et al. 2020) 
and (Han et al. 2019).  

2.1.1 Tapped Delay Line Channel 

Tapped Delay Line (TDL) is a multipath channel model defined by the 3rd Generation Partnership Project 
(3GPP) for link level simulations. The MATLAB 5G Toolbox implements a TDL channel model following 
the standard definitions found in (3GPP 2020). This channel has five premade profiles labeled TDL-A 
through TDL-E. The A-C models are for Non-Line Of Sight (NLOS) applications, whereas D and E are for 
Line Of Sight (LOS). A TDL channel profile has a predetermined path, and each of the delays and gains 
are constant for that profile. However, the channel profiles can be scaled in delay spread and doppler shift.  

The Delay Spread of a channel is the difference between the propagation delays on each channel path. The 
Delay Spread of a channel is the difference between propagation delays on each channel path. Delay spread 
is inversely related with the coherence bandwidth, which defines the range of frequencies which have 
similar fading patterns. The longer the delay spread the more frequency selective fading a channel will 
experience and the more each transmitted symbol will interference with the future symbols; known as inter 
symbol interference (Linnartz, Delay Spread 2021). The Delay Spread is offered as a parameter to the TDL 
channel to scale the path delays in its default profiles. 3GPP suggest reasonable values for delay spreads, 
shown in table 1. They suggest using a shorter delay spread of LOS applications and longer delay spreads 
for NLOS paths. Indoor applications also typically have shorter delay spreads compared to an urban macro 
cell which will have very long delays. 

Table 1: Delay Spread Range (3GPP 2020). 

Model Delay Spread 

Very short 10 ns 

Short 30 ns 

Nominal 100 ns 

Long 300 ns 

Very long 1000 ns 
 

The Doppler Shift represents a change in the frequency of a wave due to the relative velocity between the 
wave’s source and its receiver (Tse and Viswanat 2004). This effect applies to both electromagnetic and 
sound waves (this is clearly heard in the noise that vehicles make when driving by quickly: when they are 
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approaching, the sound waves are compressed, resulting in a higher frequency noise, and once it passes the 
observer, the sound waves are stretched, resulting in lower frequency noise). In the case of wireless systems, 
there is a Doppler Shift when the User Equipment (UE) is in motion relative to the Base Station (BS). The 
following equation shows how the doppler shift is calculated. 

ݐℎ݂݅ݏ ݎ݈݁݌݌݋݀                                                                   =   ௙∙ ௩௖                                                               (2) 

The carrier frequency is f, the velocity of the UE is v, and the speed of light is c. This equation is used to 
calculate a reasonable doppler shift for the simulation. The relative velocity depends on the angle the 
receiver’s direction of travel, in multipath channels each path may arrive with a different angle. This means 
that the Doppler Shift for each path will be different. The TDL channel model uses a specified maximum 
Doppler Shift to calculate the Doppler Spread, which accounts for the difference in the Doppler Shifts 
between paths (Linnartz, 2021). 

2.1.2 Channel State Information 

Reference signals known to both the transmitter and receiver are sent through the channel and analyzed by 
the receiver, which can predict the channel effects based on the difference between the known signal and 
the received signal. The receiver uses the reference signal to calculate a variety of CSI which is sent back 
to the transmitter and used to optimize the communications. The CSI metrics considered in this research 
are SNR, RSSI, CQI, PMI, and RI. Signal to Noise Ratio (SNR) describes how much more powerful the 
signal is compared to the background noise. The higher the SNR, the easier it is to distinguish the signal 
from the noise. The transmitter uses the SNR to determine which modulation scheme to use, higher SNR 
will support more bits per second you have not said much about the “symbol”. RSSI simply returns the 
signal power measured at the receiver in negative dB, it typically ranges from 0-127. The CQI is an index 
into a list of SNR ranges. The SNR is measured and compared to a list of 15 ranges, the CQI is the index 
to the range that matches the SNR. The higher the CQI, the better the SNR range. PMI is used in MIMO 
systems; it is an index into a list of potential precoding matrices. The matrix selected will be multiplied by 
the signals to be transmitted, mapping and scaling them for the appropriate antennas. The PMI is related to 
the angles of the channel and is used for beamforming. Finally, RI is related to the rank of the channel 
matrix, if the RI is only rank 1 that means there is one independent path through the signal. The RI is used 
to know how many independent paths there are between the transmitter and receiver. If paths are 
independent, then the system can transmit different data streams over them and still recover the data. The 
transmitter will consider the PMI and RI together to choose the appropriate precoder matrix.  

2.1.3 Orthogonal Frequency Division Multiplexing (OFDM)  

OFDM is the most common modulation scheme in modern communication systems. It splits the available 
frequency bandwidth into many narrow band subcarriers and transmits many symbols in parallel at a lower 
symbol rate. This approach avoids the extra complications caused by high data rates while maintaining the 
same throughput, achieving high spectral efficiency. An OFDM grid is used when scheduling OFDM 
transmissions. The grid breaks the available bandwidth into subcarriers and resource blocks, which are a 
collection of subcarriers (Zaidi et al. 2018). In the time domain each element represents an OFDM symbol 
and a collection of 14 symbols makes a slot. A single element is called a resource element, although blocks 
and slots are the smallest schedulable units. Each resource element will have a different channel effect on 
each of the transmit antennas. The channel matrix will be four dimensioned: frequency subcarrier × time 
slot × receive antenna × transmit antenna. The OFDM grid will be populated with various symbols, such 
as, reference, control, or data signals. The UE and the BS will agree on which symbols will be used for 
what transmission in advance. 
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2.2 Machine Learning Applications in 5G Systems 

Machine Learning (ML) models are adaptive algorithms that make predictions based on a set of input 
features. A feature is any combination of measurements on the object of study. Due to the complex nature 
of 5G wireless systems, ML based approaches have become increasingly popular (Luo et al. 2020). A ML 
model must be “trained” using example data, including sample inputs and desired outputs. During training, 
the model tunes its internal parameters to increase the likelihood of correctly predicting the desired outputs. 
Next, it is important to test the model’s accuracy. This is done by providing the model with inputs it has 
never seen and comparing the predictions with the expected outputs. There are two types of ML problems: 
classification and regression. Classification problems focus on fitting the observed feature set into discrete 
classes. Whereas regression problems involve trying to predict continuous values.  

A Neural Network (NN) is a common non-linear statistical model used for ML. The NN is built as layers 
of nodes converting inputs into outputs; each NN consists of an input layer, one or more hidden layers, and 
an output layer. The number of hidden layers and the number of nodes in the hidden layers are parameters 
that can be tuned (Hastie, Tibshirani, and Friedman 2017). A NN with more than one hidden layer is known 
as a Deep Neural Networks (DNN). The Universal Approximation Theorem proved that an NN with one 
hidden layer can approximate any continuous function (Winkler and Le 2016). Therefore, any resulting 
DNN could be recreated with a single hidden layer if given enough nodes. 

3 EXPERIMENT STRUCTURE  

In this study, a simulator for a 5G NR wireless system is built to generate datasets for training a NN that 
will predict path components using limited CSI. The simulator uses MATLAB’s 5G toolbox for the channel 
model, signal modulation, frame structure, OFDM grid population, and some of the CSI calculations. The 
inputs to the simulator include channel model, carrier, frame count, doppler shift, and delay spread. The 
simulator takes the many parameters as inputs and is run in two ways: random input data within the 
acceptable range, or equally spaced data spanning the input space. The dataset generated for training spans 
the input space with finely grained steps and a high SNR ratio (20dB). The test set uses the random 
parameter generation to create unpredictable data for evaluating the model. The simulator outputs the 
calculated CSI, and path gains and delays present in the channel. The channel model used had a variable 
number of paths, with a maximum of 24. The simulation logs all the inputs and outputs for each frame in a 
csv file, padding the entries with less than 24 paths with delays of 0s and gains of -1000dB. Section 4 
contains an in-depth description of the simulator and section 5 discusses the generated dataset. 

The simulated datasets were used as training and testing data for ML models. The models’ input features 
were the measured CSI. The model was trained to predict the path gains and delays. Once trained the models 
were run on the test data without knowledge of the path gains and delays. The predicted results were com-
pared to the true values and two performance metrics were considered: Root Mean Squared Error (RMSE) 
and the Coefficient of Determination (R2). The models tried to predict 24 path components for each set of 
CSI, although only the 10 paths with the highest power were considered when calculating performance 
metrics.  Different combinations of CSI were tested to determine which features were best. Additionally, 
NN with a varying number of nodes and hidden layers were tested. The NN with a single hidden layer and 
40 hidden nodes was found to perform the best. The single hidden layer is further justified by the Universal 
Approximation Theorem. Results for the accuracy of the NN are presented in Section 5. 

4 SIMULATOR DESIGN AND IMPLEMENTATION  

The channel simulator was developed to generate realistic test data to be used in this study. The channel 
simulator was programmed using MATLAB’s 5G toolbox, which provides support for modeling, 
simulation, and verification of NR communication systems (MathWorks 2020). Two scripts were 
developed, the first simulates downlink CSI-RS, and the second is for uplink SRS symbols. This work 
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focused on the data generated in the downlink direction. The remainder of this section will include design 
decisions, inputs, outputs. 

4.1 Simulator Architecture 

The simulator emulates a 5G wireless system transmitting reference signals and calculating the CSI. An 
overview of the simulator is shown in Figure 1.  

 

Figure 1: Simulator Block Diagram. 

The simulation starts by creating an OFDM grid populated with reference symbols. The grid of symbols is 
modulated using MATLAB 5G Toolbox functions based on the configuration in the carrier object. The 
modulated signal is passed through the channel, resulting in an ideal received signal. The Free Space 
Pathloss equation shown in (1) is then applied to the signal to scale down the received power prior to adding 
Additive White Gaussian Noise.  The received signal is then demodulated and used to calculate CSI. The 
channel conditions and resulting CSI are recorded and logged to the output file. This process is repeated 
for as many frames as desired. 

4.2 Channel Parameters 

The script generates channel parameters in two ways: the first using a desired range and steps for each 
parameter, simulating all their combinations; the second generating a preset amount randomly within the 
range. The first method is to be used when generating training data, this way the training data spans the set 
of all possible channel parameters. While generating test datasets, the random distributions in the second 
method may better represent real channel conditions. The random parameter generation is limited to a 
uniform distribution.  

The simulated datasets have variable doppler shift, delay spread, and channel profiles. Currently the datasets 
focus on maximum doppler shifts in the range of 10Hz to 220Hz. This range was derived using equation 
(2). A theoretical maximum speed (v) of 130km/h and a carrier frequency (f) of 2GHz was used. The range 
of delay spreads considered started at 10ns and went to 1000ns. The range was taken from table 1 as we 
wanted our training data to cover all reasonable delay spreads from (3GPP 2020). The script will simulate 
each TDL profile (A-E) for each of the given channel spreads and shifts. 

4.3 Dataset Output 

The script aggregates the results from each simulation and saves them in excel spreadsheet. The headings 
for the dataset are shown in Table 2, along with a description of their value. The italic characters in the 
column names represent variables. The ‘x’ variable is the number of frequency ranges, the script simulates 
a system with 52 subcarriers. There are 4 subcarriers per frequency range, which goes from 0 – 12 (13x4 = 
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52 subcarriers). The ‘a’ and ‘b’ represent transmit and receive antennas respectively, and this variable is 
used for the CQI for a given antenna pairing. The ‘p’ is for path number, different channel variants will 
have a different number of paths, typically ranging from 10-25. Finally, the ‘y’ is for the receive-antenna 
number. 

Table 2: Dataset Column Descriptions. 

Column Name Description 

Frame Fame number of the CSI reading 

Slot Slot number of the CSI reading 

Channel Channel model (TDL-A, CDL-C, etc...) 

Tx_Ant Number of transmit antennas 

Rx_Ant Number of receive antennas 

Doppler_Shift The maximum Doppler shift (Hz) 

Delay_Spread Desired delay spread (s) 

RI_FRx Rank Indicator for each Frequency Range 

PMI_FRx Precoder Matrix Indicator for each Frequency Range 

CQI[ab]_FRx Channel Quality Indicator for each antenna pair (inside []) and Frequency 
Range.  

Path_Delayp The path delays extracted from the channel model. The number of paths is not 
uniform, if the path does not exist the delay value assigned is 0.  

Path_Avg_Gainp The path gains extracted from the channel model. The number of paths is not 
uniform, if the path does not exist the gain value assigned is -1000 db. 

RSRPy Row vector of reported RSRP values for all CSI-RS resources, where each 
element represents the maximum RSRP on each receive antenna.  

RSSIy Row vector of reported RSSI values for all CSI-RS resources, where each 
element represents the maximum RSRI on each receive antenna. 

RSRQy Row vector of reported RSRQ values for all CSI-RS resources, where each 
element represents the maximum RSRQ on each receive antenna. 

5 SIMULATIONS AND OBTAINED RESULTS 

This section starts with the simulation parameters and the obtained results. Thereafter, is a discussion of the 
developed models for channel reconstruction from CSI feedback. Finally, the results from the NN 
estimation of channel path gains and delays are presented.  

The simulations use the TDL channel with varying profiles available in the MATLAB 5G toolbox. Each of 
the preset channel profiles were considered TDL-A to TDL-E, to capture the performance in a variety of 
channel conditions. Furthermore, the doppler shift and delay spread were varied across their range in fine 
grained steps. The doppler shift started as low as 30Hz, increasing by 10Hz steps until reaching the 
maximum value of 220Hz. The delay spread started at 10ns, increased by 10ns steps all the way to 1000ns. 
Each combination of the channel profiles, delay spreads, and doppler shifts was simulated for 18 frames 
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containing reference signals. The channel state information was calculated and logged along with the 
simulator parameters and path components.   

After collecting the data from the simulations, the data is cleaned and organized in a data frame that will be 
used to build the model. Tables 3 and 4 show a sample of the data frame generated. After preparing and 
cleaning the data frame, it is used to build a supervised learning model to predict the delays and gains of 
the different channel paths from the CSI feedback. NNs were used for this purpose. As can be seen from 
Tables 3 and 4, there are 24 paths of the used channel models, each has their own average gains and delays.  

Table 3: Sample of the data frame (part-1). 

RI_FR0  RI_FR12 PMI_FR0  PMI_FR12 CQI[11]_FR0  CQI[22]_FR12 
Path 0 
Delay  

Path 23 
Delay 

2  2 1  0 4  5 0  0 
2 … 2 1 … 0 3 … 7 0 … 0 
2  2 1  1 0  8 0  0 
2  2 1  1 0  9 0  0 
2  2 1  0 0  8 0  0 
2  2 1  0 3  7 0  0 
2  2 1  0 3  7 0  0 
2  2 1  1 3  8 0  0 
2  2 1  1 2  6 0  0 

Table 4: Sample of the data frame (part-2). 

Path 0 
Gain  

Path 23 
Gain 

RSRP1 
(dBm) 

RSRP2 
(dBm) RSSI1 RSSI2 RSRQ1 RSRQ2 

-13.4  -1000 -86.7729 -93.3184 3.29E-11 5.27E-11 0.91589 0.45948 
-13.4 … -1000 -85.7395 -92.8659 1.56E-10 4.03E-11 0.88646 0.66748 
-13.4  -1000 -85.333 -91.9726 1.71E-10 4.55E-11 0.89134 0.72489 
-13.4  -1000 -85.3428 -91.5111 1.70E-10 5.37E-11 0.89141 0.68337 
-13.4  -1000 -85.7687 -90.747 1.55E-10 7.53E-11 0.88826 0.58172 
-13.4  -1000 -86.7355 -90.2949 1.25E-10 9.41E-11 0.88201 0.51643 
-13.4  -1000 -87.424 -90.1842 1.07E-10 9.95E-11 0.87838 0.50074 
-13.4  -1000 -89.2049 -90.1273 7.16E-11 1.00E-10 0.87263 0.50515 
-13.4  -1000 -91.4055 -90.1683 4.29E-11 8.86E-11 0.87791 0.56471 

 

Tables 3 and 4 also show the different CSI feedback values used to build the model. First, when it comes 
to RI, there are 13 different values in each row. Each value is for a different subchannel. There are also 13 
different PMI values in each row (one for each subchannel). Regarding CQI, there are 52 values in each 
row. As 2×2 MIMO is used in the simulations, we have 4 different groups of CQI values, i.e., one group 
for each input/output combination. In each group, there are 13 different values (one for each channel). There 
are also 2 values of RSRP, RSSI, and RSRQ values in each row (one for each antenna pairing).   

As mentioned above, the goal is to build a model to estimate the gains and delays of the different channel 
paths from the CSI feedback. Many models were tested with different combinations of CSI values and the 
best results were obtained by training the model with all the RSSI, RSRQ, and CQI values as the dependent 
variables. The output of the model (independent variables) is the gains and delays for all the paths. 
Additionally, testing was done to determine the optimal depth and width of the hidden layers. It was 
concluded that one hidden layer performed best with 40. 

Authorized licensed use limited to: Carleton University. Downloaded on April 14,2022 at 15:20:06 UTC from IEEE Xplore.  Restrictions apply.



Earle, Al-Habashna, Wainer, Li, and Xue 

The testing results from the trained model are shown in Figure 2. The true values (on the y-axis) are plotted 
against the predicted values (on x-axis) for the path delays. The image on the left is for the second path 
while the one on the right is for the third. Path one is omitted as this is the reference path and its delay 
relative to itself is always zero. The ݕ =  line in the figures shows where all the points would lie if the ݔ
classifier predicted each value perfectly (true value = predicted value). As can be seen in Figure 2, there is 
a strong correlation between the actual and predicted values of the delays, shown by most of the points 
lying close to the ݕ =  line. Similar results are obtained for the remaining paths. The average RMSE of ݔ
delay predictions of the first 10 paths is 9.599391e-08 seconds. Additionally, the R2 value for the delay 
predictions was 0.9664731, meaning almost all the variance was accounted for in the model. 

Figure 2: Real vs. predicted delays of the second (left) and third (right) path. 

Figure 3 shows the true values plotted against the predicted values for the path gains in the first and second 
paths. Although the figures show that some of the predicted values deviate from the actual values, further 
statistical analysis show that there are few outliers, and most of the predicted results are close to the true 
values. Results show that the average RMSE of gain predictions of the first 10 paths is 0.9862863 dB. This 
means that out of the total range of about 20 dB, the average error of estimated path gain values is less than 
1 dB. The R2 value for the gain predictions was 0.9818478, again showing that almost all the variance was 
accounted for in the model.  

 
Figure 3: Real vs. predicted gains of the first (left) and second (right) path. 

The results show that the path gains and delays can be predicted by partial CSI feedback. The models above 
were trained on a laptop with Quad-Core processor and 16GB RAM. More accurate results can be obtained 
with bigger data sets that can be trained with more powerful computational resources (e.g., on the cloud).  

Authorized licensed use limited to: Carleton University. Downloaded on April 14,2022 at 15:20:06 UTC from IEEE Xplore.  Restrictions apply.



Earle, Al-Habashna, Wainer, Li, and Xue 

6 CONCLUSION 

We presented a simulator developed using the MATLAB’s 5G Toolbox and a Neural Network (NN) to 
predict 5G NR channel path gains and delays from limited CSI. Various combinations of channel conditions 
were simulated to generate a dataset of CSI, path gains and delays. The TDL channel model was used, 
along with free space pathloss and AWGN to emulate a real system. The CSI considered in this research 
was RI, RSSI, CQI, and PMI. The simulator was used to generate several datasets which were used for 
training and testing NNs in R. The ML models used the CSI as input features and predicted the gain and 
delay for each of the paths. These values were predicted since they can be used to reconstruct the channel 
matrix. Many NN were tested with varying input features, hidden layer depth and width; only the best 
performing model was presented here. The RMSE and R2 values were compared, and the best results came 
from using all the CSI with a single hidden layer and 40 hidden nodes. The NN showed promising accuracy 
considering the limited CSI used for training. In future work we will present the hyperparameter 
optimization, comparing the developed models and expanding to uplink channel sounding. Additionally, 
validation will be done using over the air data.  
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